
CONTEXT AND CONTENT AWARE ROUTING OF MANAGED
INFORMATION OBJECTS

UNIVERSITY OF FLORIDA

MAY 2014

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2014-125

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2014-125 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

//SIGNED// //SIGNED//
CHRISTOPHER J. FLYNN MARK H. LINDERMAN
Work Unit Manager Technical Advisor, Computing &

 and Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MAY 2014
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2011 – SEP 2013
4. TITLE AND SUBTITLE

CONTEXT AND CONTENT AWARE ROUTING OF MANAGED
INFORMATION OBJECTS

5a. CONTRACT NUMBER
FA8750-11-1-0245

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Sartaj Sahni

5d. PROJECT NUMBER
TDTR

5e. TASK NUMBER
FL

5f. WORK UNIT NUMBER
OR

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Florida
Office of Engineering Research
339 Weil Hall
Gainesville FL 32611-6550

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2014-125
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Under this project, we developed (a) a crossbar simulator for the AFRL trusted router project and (b) a high-performance
publish/subscribe system. An early version of the simulator was validated using publish throughput data and the
simulator was then modified to conform to the assumptions of the AFRL trusted router crossbar. The publish/subscribe
system was benchmarked against the state-of-the-art system BE-Tree and delivered a speedup between 1.16 and 11.26.
Our system is also able to handle more general subscriptions and events.

15. SUBJECT TERMS
Trusted routers, crossbar simulator, publish/subscribe systems, performance.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
CHRISTOPHER J. FLYNN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

21

Table of Contents

List of Tables .. ii

List of Figures ... ii

Summary ... 1

1 Introduction ... 2

2 Methods, Assumptions, and Procedures .. 2

2.1 Background and Related Work .. 2

2.2 Crossbar Simulator ... 3

2.3 PUBSUB .. 4

3 Results and Discussion .. 7

4 Conclusions ... 8

5 References ... 9

APPENDIX: PUBSUB: An Effieient Publish/Subscribe System... 10

List of Acronyms ... 16

i

List of Figures

Figure 1 Organization of PUBSUB subscription database ………………...……………….5

List of Tables

Table 1 Crossbar Throughput...43

ii

Summary

Under this project, the PI Dr. Sartaj Sahni and University of Florida Ph.D. student /Postdoc Ms.
Tania Banerjee-Mishra collaboratively developed (a) a crossbar simulator for the AFRL trusted
router project and (b) a high-performance publish/subscribe system. An early version of the
simulator was validated using published throughput data and the simulator was then modified to
conform to the assumptions of the AFRL trusted router crossbar. The publish/subscribe system
was benchmarked against the state-of-the-art system BE-Tree and delivered a speedup between
1.16 and 11.26. Our system is also able to handle more general subscriptions and events.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

1 Introduction

In this project, we addressed two tasks: (a) development of a C language simulator for two
types of crossbar switches—the first one is unbuffered and the second one is buffered (a
buffered crossbar switch, is one in which there is a buffer that can hold a single packet, at each
crosspoint of the switch) and (b) development of a high-performance general-purpose
publish/subscribe system.

2 Methods, Assumptions, and Procedures

2.1 Background and Related Work

Karol et al. [1] analyzed two models for switching using a crossbar switch and fixed-length
packets. In one model, the queues are at the inputs while in the other, the queues are at the
outputs. Their analysis shows that the “mean queue lengths are always greater for queuing on
inputs than for queuing on outputs”. Line et al. [2] showed that the throughput of a crossbar in
which the queues are at the inputs is limited to 58.6% for several distributions (e.g., uniform) of
the arrival rates of fixed-length packets. They further showed that when the crossbar “switch
can buffer one packet at each crosspoint, then the throughput increases to 100% asymptotically
as N infinity, where N is the number of switch ports”.

A publish/subscribe (pub/sub) system maintains a database of subscriptions, where each
subscription is a Boolean expression. For example, each subscription in the pub/sub system of a
diverse online vendor may describe the conditions under which a customer may purchase a
product. A customer interested in acquiring a camera may post his/her requirement as a
subscription to the vendor’s pub/sub system by providing the Boolean expression:

item = “camera” ^ price < $300 ^ manufacturer in{Sony,Nikon, Panasonic} ^ zoom > 4×

An event specifies the values of some attributes. For example the availability of a new $199 5x
zoom camera from “Sony” or a price change in an existing 5x zoom“Sony” camera to $199
may be specified by the event:

item = “camera” ^ color = “red” ^ weight = 8oz ^ pixels = 14M ^ price = $199 ^ manufacturer
= “Sony” ^ zoom = 5×

The above event matches the example subscription as all 4 predicates in the subscription
evaluate to true when the attributes used in the subscription are assigned the values specified in
the event. When an event occurs, the pub/sub system reports all subscriptions in its database
that are matched (or satisfied by the event). Customers who posted these matching subscriptions
may then be notified.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

The problem of rapidly evaluating a large number of predicates against specified events has
been studied extensively in the literature. Yan and Garcia-Molina proposed the use of indexes
to speed the evaluation of a collection of Boolean expressions and developed SIFT [3], which is
a system based on indexing. Later various researchers [4, 5, 6, 7, 9] proposed decision trees and
index structures for this problem. The proposed approaches can be divided into two main
categories. The first category is counting based while the second category is based on
partitioning subscriptions into subsets. Counting based pub/sub systems build an inverted index
structure from the subscriptions and minimize the number of predicate evaluations while
partitioning-based systems minimize evaluations by recursively eliminating the subscriptions
that cannot be satisfied. The propagation algorithm proposed by Fabret et al. [4], the matching
algorithm proposed by Carzaniga et al. [5,6], and the inverted list construction by Whang et al.
[7] all result in pub/sub systems that are counting based. Gryphon, developed by Aguilera et al.
[9] and BE-tree [9] developed by Sadoghi and Jacobsen are examples of partitioning-based
systems. Our pub/sub system, PUBSUB, also is partitioning based.

2.2 Crossbar Simulator

We developed C language simulators for two types of crossbar switches. The first one is
unbuffered, and the second one is buffered. A buffered crossbar switch, is one in which there is
a buffer that can hold a single packet, at each crosspoint of the switch.

The assumptions are the following:

1. Both the switches are synchronous switches, and have N ports, where N is specified
from the command line.

2. Independent, statistically identical traffic arrives at each input port. The probability that
a packet will arrive at an input port in a given time slot, is p. Each packet has an equal
probability of 1/N of being addressed to any given output and successive packets are
independent.

3. While there are input FIFO queues, there are no output queues.
4. The scheduler for the unbuffered switch operates as follows. At the beginning of every

time slot, the first packet in each FIFO queue is inspected. If every packet is addressed
to a different output, the scheduler closes the proper cross points and all the packets go
through. If k packets are addressed to a particular output, the scheduler picks one
(randomly selected with probability 1/k) to send while the others wait until the next time
slot when a new selection is made among the packets that are then waiting.

5. The scheduler for the buffered crossbar switch is also similar. If k packets are waiting at
k crosspoints for the same output, then one among the k packets are chosen at random
(probability 1/k) while the others wait for being chosen at subsequent time slots.

Our simulator was validated using throughput data published in papers by Karol et al. and Lin
et al. [1,2]. Table 1 gives the throughputs measured by our simulator.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

Table 1 Crossbar throughput

N Unbuffered (Karol et
al.)

Buffered (Lin et
al.)

1 1.0000 1.0000

2 0.7500 0.80

3 0.6825 0.7755

4 0.6553 0.7682

5 0.6399 0.7665

6 0.6303 0.7684

7 0.6234 0.7701

These throughputs are obtained assuming that the input queues are saturated, that is, packets are
always waiting on each input queue. This saturation was obtained by setting p = 1. So, each
input receives one packet in every time slot. The throughputs recorded by our simulator are
very close to those published in the literature and given in the above table.

Following this validation, the simulator was modified as below to conform to the crossbar
proposed for the AFRL trusted router:

1. Input ports corresponding to the two Ethernet ports do not send packets to the other
Ethernet port. So, the packets from the Ethernet ports must go to one of the four
processors. In fact, a packet could go to more than one processor through multicasting.

2. A round robin scheduler was used to select a packet when multiple packets are destined
for the same output.

The developed simulator has been delivered to AFRL.

2.3 PUBSUB

Figure 1 gives the organization of the subscription database used in our pub/sub system
PUBSUB. This database comprises a collection of level-1 attribute structures A1, . . . ,Am,
where m is the number of attributes. We assume that the allowable attributes have been
numbered 1 through m and that the attributes in a subscription are ordered using this numbering
of attributes. The attribute structure Ai stores all subscriptions that include a predicate on
attribute i but not on any attribute j < i. We say that the attribute i is associated with the
structure Ai. With our assumptions on attribute ordering within subscriptions, Ai contains all
subscriptions whose first attribute is i. In practice, many of the Ais will be empty and only non-
empty attribute structures are stored in PUBSUB.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

Figure 1 Organization of PUBSUB subscription database

A level-k, k > 0, attribute structure Ai comprises 0 or more buckets that contain subscriptions.
The distribution of subscriptions across these buckets is determined by the attribute I predicates
in these subscriptions and the data structure D used to keep track of the buckets. The data
structure D, when given a value vi for attribute i is able to efficiently locate the buckets that
contain all subscriptions (and possibly others) whose predicate on attribute i is satisfied by vi.
Different attribute structures may use different data structures D to keep track of their buckets.
Individual buckets of a level-k attribute structure may have higher level (i.e., larger k) attribute
structures associated with them. The attribute associated with a level-k attribute structure is the
kth attribute of the subscriptions stored in that structure. For uniformity, level-1 attribute
structures are associated with a header bucket that is always empty.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

The main data structures employed in PUBSUB are 1) a global hash table, 2) buckets, and 3)
D- structures.

1) Global Hash Table: A single global hash table is used to keep track of all attribute
structures regardless of their level and which bucket they may be associated with. The
hash key for an attribute structure Zi associated with bucket b is the pair (b, i). Each Zi
is kept track of using some characteristic of Zi such as the header (if any) of the data
structure D used in Zi.

2) Bucket: A bucket is used to store subscriptions. The organization of a bucket is
application dependent and we describe exemplar organizations for small and large
buckets. Small buckets store few subscriptions, while large ones may store over a
thousand subscriptions. Small buckets are useful in applications where the rate at which
subscriptions are posted/deleted is high while large ones are useful when we are
concerned primarily with the time to process an event.

Subscriptions in a small bucket may be stored as an unordered list. Subscriptions in a
large bucket are sorted on the first attribute not associated with the attribute structures
on the path from the header to the current bucket. Each group of subscriptions with the
same first unused attribute is further sorted based on the predicates of this common
attribute. Subscriptions in a group are sorted by the starting point of the predicate range
for the common attribute.

3) D Structures: Priority Search Trees [10], Interval Trees [11], Suffix Trees [12], and
Aho-Corasick Tries [13] are all examples of structures that can be used for D, depending
on the type of attribute being partitioned by D and the operators being supported in the
predicates on this attribute. For example, priority search trees and interval trees could be
good choices for attributes whose predicates specify a range of values while suffix trees
could be good choices for string attributes whose predicates use the substring and suffix
operators. Our current implementation of PUBSUB includes Radix Priority Search
Trees (RPST), Red-Black Priority Search Trees (RBPST) and Interval Trees (IT). These
data structures are well suited to determine which of a set of range predicates are
satisfied by a specified attribute value. The current implementation of PUBSUB is
readily extended to support additional attribute data structures such as red-black trees
for exact match attributes and suffix trees and Aho-Corasick tries for string attributes.

More detail on PUBSUB may be found in [14].

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

3 Results and Discussion

A version of PUBSUB optimized for event processing was benchmarked against the most
recent versions of the publish/subscribe systems BE-Tree and Siena, which also are optimized
for event processing. PUBSUB processes events faster than Siena and BE-tree. On our tests, the
speedup of the fastest version of PUBSUB relative to Siena was 98% on an average. The
speedup range relative to BE-Tree was from 1.23 to 1.48 and averaged 1.36 on the uniform tests
and PUBSUB was comparable to BE-tree on the Zipf tests. The faster times in PUBSUB were a
result of very efficient data structures used in PUBSUB to store the subscriptions, and the fast
matching algorithms developed to match events to subscriptions.

Besides superior performance, PUBSUB offers the following advantages relative to BE-Tree:
1. BE-Tree uses the same clustering strategy for all attributes resulting in a homogeneous

system. PUBSUB, which is a heterogeneous system, offers a variety of data structures to
keep track of the buckets in an attribute structure enabling the user to select data
structures best suited for each attribute.

2. The clustering strategy employed in BE-Tree limits us to attributes whose values are
discrete and for which the range of values is known in advance (i.e., at the time the
attribute is created). So, for example, a non-negative integer valued attribute can be used
only if we know, in advance, what its maximum value is. Because of PUBSUB’s
heterogeneity in data structures for each attribute, PUBSUB permits all attribute data
types. So, for example, we may set the attribute data structure D to RBPST for all
attributes whose values are ordered (i.e., two attribute values may be compared to
determine whether one is less than the other or whether both are equal), to IT for
discrete valued attributes whose range is known in advance, to suffix tree or Aho-
Corasick trie for attributes of string type (although the current implementation of
PUBSUB doesn’t support these structures, they are easily added to PUBSUB).

3. The clustering strategy employed in BE-Tree results in performance degradation when
many subscriptions specify a range for the clustering attribute that spans the clustering
criterion p. So, for example, if we are clustering on attribute 6 and using the criterion p
= 30, then all subscriptions with a predicate on attribute 6 that is satisfied by the value
30 are assigned to the same cluster. Suppose that many of these predicates are range
predicates of the form low ≤ a6 ≤ high, where the interval [low, high] is the range of
attribute 6 (a6) values that satisfy the predicate on this attribute. To determine which of
these actually match the event value (say) 20, we must examine each of the a6 ranges in
the cluster. This takes time linear in the cluster size, which could be fairly large.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

PUBSUB overcomes this type of performance degradation by using data structures D
that can quickly extract matching subscriptions even from large clusters.

4 Conclusions

Under this award, the PI Dr. Sartaj Sahni and University of Florida Ph.D. student Ms. Tania
Banerjee-Mishra collaboratively researched crossbar simulators and publish/subscribe systems.
Ms. Mishra graduated during the course of this project and upon graduation, remained on the
project as a postdoc. The crossbar simulator was developed to meet the specifications provided
us by AFRL and was used by AFRL in their in-house Trusted Router development project. The
publish/subscribe system PUBSUB has been deployed at AFRL. On our tests, the speedup of
the fastest version of PUBSUB relative to Siena was 98% on an average. The speedup range
relative to BE-Tree was from 1.23 to 1.48 on the uniform tests and PUBSUB was comparable
to BE-tree on the Zipf tests.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

5 References

1. M. Karol, N. Holmdel, M. Hluchyj, and S. Morgan, Input Versus Output Queueing on a
Space-Division Packet Switch, IEEE Trans. On Communications, 35, 12, 1987, 1347 –
1356.

2. M. Lin and N. McKeown, The Throughput of a Buffered Crossbar Switch", IEEE
Communications Letters, 9, 5, 2005, 465 – 467.

3. T. W. Yan and H. Garcia-Molina, The SIFT Information Dissemination System. ACM
TODS, 1999.

4. F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha, Filtering
algorithms and implementation for fast pub/sub systems, SIGMOD 2001.

5. A. Carzaniga, D. Rosenblum, and A. Wolf, Design and evaluation of wide-area event
notification service. ACM Trans. On Computer Systems, 19, 3, 2001, 332–383.

6. A. Carzaniga and A. L. Wolf, Forwarding in a Content-Based Network, ACM
SIGCOMM 2003.

7. S. Whang, C. Brower, J. Shanmugasundaram, S. Vassilvitskii, E. Vee, R. Yerneni, and
H. Garcia-Molina, Indexing Boolean Expressions, VLDB, 2009.

8. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra, Matching
events in a content-based subscription system, PODC 1999.

9. M. Sadoghi and H.-A. Jacobsen, BE-Tree: An Index Structure to Efficiently Match
Boolean Expressions over High-dimensional Discrete Space, SIGMOD 2011.

10. E. M. McCreight, Priority Search Trees, Siam J. Comput. Vol. 14, No. 2, May 1985,
257–276.

11. D. Mehta and S. Sahni, Handbook of Data Structures and Applications, Chapman &
Hall/CRC, 2005.

12. E. M. McCreight, A Space-Economical Suffix Tree Construction Algorithm, Journal of
the ACM, Volume 23, No. 2, 1973, 262-272.

13. A. V. Aho and M. J. Corasick, Efficient String Matching: An Aid to Bibliographic
Search, Communications of the ACM, Volume 18, No. 6, June 1975, 333-340.

14. T. Banerjee-Mishra and S. Sahni, PUBSUB: An efficient publish/subscribe
system, IEEE Symposium on Computers and Communications (ISCC), 2013.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

PUBSUB: An Efficient Publish/Subscribe System ∗

Tania Banerjee Mishra, Sartaj Sahni
Department of Computer and Information Science and Engineering,

University of Florida, Gainesville, FL 32611
{tmishra, sahni}@cise.ufl.edu

ABSTRACT
PUBSUB is a versatile, efficient, and scalable publish/subscribe sys-
tem. This paper describes the architecture of PUBSUB together
with some of its current capabilities. A version of PUBSUB op-
timized for event processing was benchmarked against the pub-
lish/subscribe systems BE-Tree and Siena, which also are opti-
mized for event processing. PUBSUB processes events faster than
Siena and BE-tree. On our tests, the speedup of the fastest version
of PUBSUB relative to Siena was 98% on an average. The speedup
range relative to BE-Tree was from 1.23 to 1.48 and averaged 1.36
on the uniform tests and PUBSUB was comparable to BE-tree on
the Zipf tests. The faster times in PUBSUB were a result of very
efficient data structures used in PUBSUB to store the subscriptions,
and the fast matching algorithms developed to match events to sub-
scriptions.

Keywords
Content based publish/subscribe, Boolean expressions, efficient sub-
scription matching

1. INTRODUCTION
A publish/subscribe (pub/sub) system maintains a database of

subscriptions, where each subscription is a Boolean expression. For
example, each subscription in the pub/sub system of a diverse on-
line vendor may describe the conditions under which a customer
may purchase a product. A customer interested in acquiring a cam-
era may post his/her requirement as a subscription to the vendor’s
pub/sub system by providing the Boolean expression:

item = “camera” ∧ price < $300 ∧
manufacturer ∈ {Sony,Nikon, Panasonic} ∧ zoom > 4×

This subscription uses four attributes of a product, namely,item,
price, manufacturer and zoom. An attribute is also referred

∗This research was supported, in part, by the US Air Force Re-
search Laboratory, under grant FA8750-11-1-0245.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

to as a dimension. A predicate consists of an attribute, an oper-
ator and attribute value(s). For each permissible value of an at-
tribute, the predicate evaluates to true or false. In the above exam-
ple,price < $300 is a predicate that is true whenever the attribute
price has a value below $300 and false otherwise. A subscrip-
tion is the conjunction of predicates. Our example subscription
is the conjunction of 4 predicates. An event specifies the values
of some attributes. For example the availability of a new $199
5x zoom camera from “Sony" or a price change in an existing
5x zoom “Sony" camera to $199 may be specified by the event:

item = “camera”∧color = “red”∧weight = 8oz∧pixels =
14M∧price = $199∧manufacturer = “Sony”∧zoom = 5×

The above event matches the example subscription as all 4 predi-
cates in the subscription evaluate to true when the attributes used in
the subscription are assigned the values specified in the event. The
example subscription, however, is not matched by the following
events:

item = “camera” ∧ pixels = 14M ∧ price =
$399 ∧ manufacturer = “Sony” ∧ zoom = 5×

item = “camera”∧price = $129∧manufacturer = “Sony”

The first of these events fails to match the subscription because
the price is too high and the second fails because it does not specify
the value of an attribute (zoom) that occurs in the subscription.

When an event occurs, the pub/sub system reports all subscrip-
tions in its database that are matched (or satisfied by the event).
Customers who posted these matching subscriptions may then be
notified.

Pub/sub systems are used in diverse applications with varied per-
formance requirements. For example, in some applications events
occur at a much higher rate than the posting/removal of subscrip-
tions while in other applications the subscription rate may be much
higher than the event rate and in yet other applications the two
rates may be comparable. Optimal performance in each of these
scenarios may result from deploying a different data structure for
the subscriptions or a different tuning of the same structure. Many
commercial applications of pub/sub systems have thousands of at-
tributes and millions of subscriptions. So, scalability in terms of
number of attributes and number of subscriptions is critical.

In this paper, we describe the architecture of PUBSUB, which is a
versatile and scalable pub/sub system that may be tuned to provide
high performance for diverse application environments. PUBSUB

is versatile because its architecture supports a variety of predicate
types (e.g., ranges, regular expressions, string relations) as well as a
heterogeneous collection of data structures for the representation of
subscriptions in order to achieve high throughput. The performance

APPENDIX

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

of a version of PUBSUB that was tuned for applications in which
events occur far more frequently than subscription posting/deletion
(hence, high-speed event processing coupled with reasonable sup-
port for subscription posting/deletion is required) is compared with
the performance of the pub/sub systems BE-Tree [1] developed by
Sadoghi and Jacobsen and Siena [2, 3], developed by Carzaniga
and Wolf. Both of these benchmark systems also are tuned for the
same application environment. Our extensive experiments show
that PUBSUB processes events up to 95% faster than does BE-Tree
and up to 97% faster than Siena.

We have organized the paper as follows. Section 2 describes the
related work in this area. We present the PUBSUB architecture in
Section 3 and the results of extensive experimental evaluation in
Section 4. We conclude in Section 5.

2. RELATED WORK
The problem of rapidly evaluating a large number of predicates

against specified events has been studied extensively in the litera-
ture. Yan and Garcia-Molina proposed the use of indexes to speed
the evaluation of a collection of Boolean expressions and devel-
oped SIFT [10], which is a system based on indexing. Later vari-
ous researchers proposed decision trees and index structures for this
problem. The proposed approaches can be divided into two main
categories. The first category is counting based while the second
category is based on partitioning subscriptions into subsets. Count-
ing based pub/sub systems build an inverted index structure from
the subscriptions and minimize the number of predicate evaluations
while partitioning-based systems minimize evaluations by recur-
sively eliminating the subscriptions that cannot be satisfied. The
propagation algorithm proposed by Fabret et al. [8], the matching
algorithm proposed by Carzaniga et al. [2, 3], and the inverted list
construction by Whang et al. [9] all result in pub/sub systems that
are counting based. Gryphon, developed by Aguilera et al. [7] and
BE-tree [1] developed by Sadoghi and Jacobsen are examples of
partitioning-based systems. Our pub/sub system, PUBSUB, also is
partitioning based.

BE-tree [1] partitions subscriptions defined on a high dimen-
sional space using two phase space cutting technique, space par-
titioning and space clustering, to group the expressions with re-
spect to the range of values for the various attributes. Experimental
results reported in [1] indicate that the BE-tree outperforms state-
of-the-art pub/sub systems such as SCAN [5], SIFT [10], Propa-
gation [8], Gryphon [7], andk-index [9]. BE-Tree, however, is
limited to attributes whose values are discrete and for which the
range in discrete attribute values is pre-specified. So, BE-tree is
unable to cope with real-valued attributes, string-valued attributes,
and discrete-valued attributes with unknown range. Additionally,
BE-tree employs a clustering policy that is ineffective when many
subscriptions have a range predicate such aslow ≤ ai ≤ high,
whereai is an attribute and the clustering criterionp that is used
lies betweenlow andhigh. In this case, all such subscriptions fall
into the same cluster and event processing is considerably slowed
as shown in our experiments of Section 4.

Siena [2, 3] is a pub/sub system that uses a counting algorithm
to find matching subscriptions. It maintains an index of attribute
names and types. This index is implemented using ternary search
tries. Unlike BE-Tree, Siena is not limited to discrete valued at-
tributes from a pre-specified finite domain. Further, Siena is able
to work with attributes of typestring and supports operators such
as prefix, suffix, and substring on this datatype. Siena, however,
does not support incremental updates (i.e., subscription posting and
deletion) and so updates must be done in batch mode. Although
the present implementation of PUBSUB does not support the string

datatype, its architecture is sufficiently versatile to accommodate
this datatype with the inclusion of additional data structures as de-
scribed in Section 3.

3. PUBSUB

Section 3.1 describes how PUBSUBorganizes its database of sub-
scriptions. In Section 3.2 the data structures and algorithms used in
PUBSUB are presented.

3.1 Database Organization
Figure 1 gives the organization of the subscription database used

in PUBSUB. This database comprises a collection of level-1 at-
tribute structuresA1, . . . , Am, wherem is the number of attributes.
We assume that the allowable attributes have been numbered 1
throughm and that the attributes in a subscription are ordered us-
ing this numbering of attributes. The attribute structureAi stores
all subscriptions that include a predicate on attributei but not on
any attributej < i. We say that the attributei is associated with
the structureAi. With our assumptions on attribute ordering within
subscriptions,Ai contains all subscriptions whose first attribute is
i. In practice, many of theAis will be empty and only non-empty
attribute structures are stored in PUBSUB.

D

DD

D D

D
Level−1

...

A1

Level−2

Level 3

.

.

.

...
B1 Bj

...C1 Ck

Am

Buckets

Attribute structures

Figure 1: Organization of PUBSUB subscription database

A level-k, k > 0, attribute structureAi comprises 0 or more
buckets that contain subscriptions. The distribution of subscrip-
tions across these buckets is determined by the attributei predi-
cates in these subscriptions and the data structureD used to keep
track of the buckets. The data structureD, when given a valuevi
for attributei, is able to efficiently locate the buckets that contain
all subscriptions (and possibly others) whose predicate on attribute
i is satisfied byvi. Different attribute structures may use different
data structuresD to keep track of their buckets. Individual buckets
of a level-k attribute structure may have higher level (i.e., larger
k) attribute structures associated with them. The attribute associ-
ated with a level-k attribute structure is thekth attribute of the sub-
scriptions stored in that structure. For uniformity, level-1 attribute
structures are associated with a header bucket that is always empty.

To provide a better understanding of the organization of the sub-
scription database, we describe how events are processed as well as

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

Algorithm: search(Event e, Bucket b)
Input:
e: event having attributese1, e2, ..., ej
b: current bucket, initially the header bucket
Output:
list of matching subscriptions

1: foreach ei, 1 ≤ i ≤ j
2: //Aei is the attribute structure forei associated withb
3: if (Aei exists)then
4: B = buckets inAei determined byD and
5: ei to possibly have matching subscriptions
6: foreach b ∈ B
7: add matching subscriptions inb to output list
10: search (e, b);
11: endfor
12: endif
13: endfor

Figure 2: Search algorithm

how subscriptions are posted and deleted.
Figure 2 gives a high level description of the algorithm to process

an event. To search for all subscriptions that match an event that
specifies a value for the attributese1 < e2 < ... < ej , we search
the level-1 attribute structuresAei , 1 ≤ i ≤ j. Note that the re-
maining attribute structures contain subscriptions that have at least
one attribute (i.e, the first attribute) whose value is not specified by
the event and so these subscriptions are not matched by the event.
To searchAei for matching subscriptions, we use the associated
data structureD to locate the buckets that may possibly contain
matching subscriptions. The subscriptions stored in these buckets
are examined to determine those that match the event. Addition-
ally, level-2 attribute structures associated with these buckets and
whose associated attribute has a value specified in the event (i.e.,
the associated attribute is one of theeis) are recursively searched
for matching subscriptions. Note that only those attribute struc-
tures (regardless of level) whose associated attribute is one of the
eis may be examined when processing an event; theD structures
determine which of these are actually examined.

A high level description of the algorithm to post/insert a sub-
scription is given in Figure 3. Using the attributes in the sub-
scription, the attributes associated with attribute structures, and the
D structures, we follow a path that begins at the level-1 attribute
structure for the first attribute in the subscription, goes to the ap-
propriate level-2 structure for the second attribute, and so on. If no
non-empty attribute structure is encountered, then a new level-1 at-
tribute structure with a single bucket is created for this subscription.
The attribute associated with this newly created structure is the first
attribute of the new subscription. If non-empty attribute structures
are encountered, letk be the lowest level at which this happens and
let Zi be the attribute structure encountered at this level. To insert
into a level-k attribute structureZi, the data structureD for this
structure is used to determine the appropriate bucketb′ of Zi for
insertion. If this bucket is full its subscriptions along with the new
subscription are split into 2 or more buckets in accordance with the
data structureD. In case such a split is not possible (this happens
whenD is unable to distinguish among the attributei predicates of
the subscriptions in the bucket), the next attribute in the new sub-
scription is used to create a new attribute structure that includes the
new subscription and all subscriptions in the full bucket that have a
predicate on this attribute. When the new subscription doesn’t have
a next attribute, we use instead a subscription in the full bucket that
has a next attribute. When no subscription has a next attribute we
expand the full bucket beyond its designed maximum capacity.

To delete a subscription, we use a procedure that is the inverse

Algorithm: insert(Subscription s, Attribute sk , Bucket b)
Input:
s: subscription with ordered attributess1 < s2 < ... < sj
sk: current attribute, initiallys1
b: current bucket, initially the header

1: if (b has no associated attribute structureZi for sk) then
2: create an attribute structureZi for sk associated withb
3: move subscriptions (if any), with attributesk in b, toZi

4: in accordance with data structureD.
5: adds in Zi in accordance with data structureD.
6: else
7: UseD and predicate onsk to find an
8: appropriate bucketb′ in Zi for s.
9: if b′ has spacethen
10: adds to b′

11: else
12: splitb′ ands into 2 or more buckets as perD.
13: if such a split is not possiblethen
14: if (k < j) then
15: insert(s, sk+1, b′);
16: else
17: if there is a subscriptions′ in b′ with a
18: k + 1st attributea′ then
19: replaces′ by s in b′;
20: insert(s′ , a′, b′);
21: else
22: expandb′ to includes
23: endif
24: endif
25: endif
26: endif
27: endif

Figure 3: Insert algorithm

of that used to insert a subscription.

3.2 PUBSUB Data Structures

3.2.1 Global Hash Table
A single global hash table is used to keep track of all attribute

structures regardless of their level and which bucket they may be
associated with. The use of a hash table enables faster branching
to a next level bucket than when each bucket stores links to next
level buckets. The hash key for an attribute structureZi associated
with bucketb is the pair(b, i). EachZi is kept track of using some
characteristic ofZi such as the header (if any) of the data structure
D used inZi.

3.2.2 Bucket
A bucket is used to store subscriptions. The organization of a

bucket is application dependent and we describe exemplar organi-
zations for small and large buckets. Small buckets store few sub-
scriptions, while large ones may store over a thousand subscrip-
tions. Small buckets are useful in applications where the rate at
which subscriptions are posted/deleted is high while large ones are
useful when we are concerned primarily with the time to process
an event.

Subscriptions in a small bucket may be stored as an unordered
list. Subscriptions in a large bucket are sorted on the first attribute
not associated with the attribute structures on the path from the
header to the current bucket. Each group of subscriptions with the
same first unused attribute is further sorted based on the predicates
of this common attribute. For example, consider a subscription that
has a predicate0 ≤ a ≤ 10. Then, the predicate range of attribute
a is [0, 10]. Subscriptions in a group are sorted by the starting point
of the predicate range for the common attribute.

Figure 4 describes the algorithm to find matching subscriptions

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

Algorithm: Bucket::match(Event e)
Input:
e: event
Output:
matching subscriptions

1: j = 0;
2: for i // iterate over the subscription groups, increment i by 2
3: attr = group[i];
4: groupEndIndex = group[i+1];
5: if (attr exists ine) then
6: endIndex = binarySearch(attr, j, groupEndIndex);
7: for j up to endIndex, incremented by 1
8: match jth subscription in bucket with event
9: if (matched)then
10: append jth subscription to output list
11: endif
12: endfor
13: else
14: j = groupEndIndex + 1;
15: endif
16: endfor

Figure 4: Search algorithm for a large bucket

in a large bucket. In this algorithm, we check if the common at-
tribute, which is the first unused attribute for a group of subscrip-
tions in a bucket, is present in the event (line 5). If the common
attribute is not present in the event, then the whole group of sub-
scriptions is skipped (line 14). If the common attribute is present,
we match subscriptions from the beginning of the group up to a
certain subscription given by endIndex (lines 6-7) in the group,
thereby skipping the rest of the subscriptions (from endIndex+1 up
to groupEndIndex) in that group.

The processed subscriptions have the start points of predicate
ranges to the left of the event value, whereas those that are skipped
have their start points to the right, which completely eliminates the
possibility that the event value will be included in the predicate
ranges of the skipped subscriptions. Figure 5 shows a group of 5
predicate ranges and an event value corresponding to the common
attribute. The three subscriptions with predicate ranges marked
as 1, 2, 3 are matched with the event, whereas those with ranges
marked as 4 and 5 are skipped, since the start point of ranges 4 and
5 are to the right of the event value.

In the following, we use the termbucket size to mean the maxi-
mum number of subscriptions permitted in a bucket. The actual size
(both the number of subscriptions currently in a bucket as well as
the number of subscription slots presently available in the bucket;
when all subscription slots are occupied, an implementation may
expand the bucket using a technique such as array doubling [11])
of a bucket may vary dynamically.

1

3
4

5

e value

2

Figure 5: Predicate ranges are ordered by starting points

3.2.3 D Structures
Priority Search Trees [6], Interval Trees [11], Suffix Trees [18],

and Aho-Corasick Tries [17] are all examples of structures that
can be used forD, depending on the type of attribute being par-
titioned byD and the operators being supported in the predicates

on this attribute. For example, priority search trees and interval
trees could be good choices for attributes whose predicates specify
a range of values while suffix trees could be good choices for string
attributes whose predicates use the substring and suffix operators.
Our current implementation of PUBSUB includes Red-Black Prior-
ity Search Trees (RBPST) and Interval Trees (IT). These data struc-
tures are well suited to determine which of a set of range predicates
are satisfied by a specified attribute value. The current implementa-
tion of PUBSUB is readily extended to support additional attribute
data structures such as red-black trees for exact match attributes
and suffix trees and Aho-Corasick tries for string attributes.

An RBPST helps us perform exact-match searches, inserts, and
deletes inO(log n) time and rectangle searches inO(s + log n)
time, wheren is the number of points in the RBPST. RBPSTs place
no restriction on the domain or the keys.

With an IT, a pointv in a range[L,R) may be found inO(s +
logK) time, whereK is the cardinality of the range[L,R).

3.3 Comparison with BE-Tree
BE-Tree [1] and PUBSUB have many similarities. For example

both use clustering on a set of subscriptions that have a common
attribute. This is a standard approach for multidimensional data
with common attributes and has been used earlier in range trees
[20] and multidimensional tries [19], for example. Like BE-Tree,
both range trees and multidimensional tries use the same cluster-
ing strategy at all levels and for all attributes (range trees use the
median attribute value while multidimensional tries use a bit of the
attribute to cluster). PUBSUB, on the other hand, allows for a het-
erogeneous selection of clustering strategies (i.e., the data structure
D). Both BE-Tree and PUBSUB partition a set of subscriptions into
subsets that have a common attribute so that clustering may be ap-
plied to these subsets. BE-Tree selects the partitioning attribute by
analyzing the subscriptions in the bucket to be partitioned while
PUBSUB does this using a pre-specified attribute ordering.

Besides superior performance (see Section 4), PUBSUB offers
the following advantages relative to BE-Tree:

1. BE-Tree uses the same clustering strategy for all attributes
resulting in a homogeneous system. PUBSUB, which is a
heterogeneous system, offers a variety of data structures to
keep track of the buckets in an attribute structure enabling
the user to select data structures best suited for each attribute.

2. The clustering strategy employed in BE-Tree limits us to at-
tributes whose values are discrete and for which the range
of values is known in advance (i.e., at the time the attribute
is created). So, for example, a non-negative integer valued
attribute can be used only if we know, in advance, what its
maximum value is. Because of PUBSUB’s heterogeneity in
data structures for each attribute, PUBSUB permits all at-
tribute data types. So, for example, we may set the attribute
data structureD to RBPST for all attributes whose values
are ordered (i.e., two attribute values may be compared to
determine whether one is less than the other or whether both
are equal), to IT for discrete valued attributes whose range
is known in advance, to suffix tree or Aho-Corasick trie for
attributes of string type (although the current implementation
of PUBSUB doesn’t support these structures, they are easily
added to PUBSUB).

3. The clustering strategy employed in BE-Tree results in per-
formance degradation when many subscriptions specify a range
for the clustering attribute that spans the clustering criterion
p. So, for example, if we are clustering on attribute 6 and us-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

❤
❤

❤
❤
❤
❤
❤
❤
❤❤

Parameter
Experiment

4.1 4.2 4.3

Size 1M 100K-5M 1M
Number of Dimensions 1000 400 100-1500
Average Sub Size 7 7 7
Average Event Size 15 15 15
% Equality Predicates 30 30 30
Matching Probability % 0.01-15 1 1

Figure 6: Parameters used with BEGen for generating datasets

ing the criterionp = 30, then all subscriptions with a pred-
icate on attribute 6 that is satisfied by the value 30 are as-
signed to the same cluster. Suppose that many of these pred-
icates are range predicates of the formlowi ≤ a6 ≤ highi.
To determine which of these actually match the event value
(say) 20, we must examine each of thea6 ranges in the clus-
ter. This takes time linear in the cluster size, which could
be fairly large. PUBSUB overcomes this type of performance
degradation by using data structuresD that can quickly ex-
tract matching subscriptions even from large clusters.

4. EXPERIMENTS
The current version of PUBSUB is implemented in C++ and sup-

ports, forD, the data structures interval tree (IT), and red-black
priority search tree (RBPST). For our experiments, we required
PUBSUB to use the same data structureD for every attribute struc-
ture. As mentioned earlier, users may specify which data structure
D should be used for which attribute and, in general, we expect
the use of a heterogeneous set of data structures. The terms PS-IT,
and PS-RBPST refer to PUBSUB with all data structuresD set to
IT, and RBPST, respectively. For our experiments, we compiled
our code on a 64 bit Linux box with a 1.2GHz CPU. We bench-
marked the performance of PUBSUB against the pub/sub systems
BE-Tree [1] (July 28, 2012 release) and Siena [2, 3]. The BE-
tree release used by us has improved search times over the original
version used in [1]. On our platform we got about 10x improve-
ment in search performance of BE-tree with respect to the numbers
reported in [1]. We note that the times reported in [1] are in mil-
liseconds while those reported in this paper are in microseconds.
Our experiments, like those of Sadoghi and Jacobsen [1], are for
an application environment where the event rate far exceeds the
rate at which subscriptions are inserted/deleted. Hence the focus is
on event processing time. As a result, the experiments first initial-
ize the subscription database and then measure the time needed to
process events. For the application environment considered in this
section, Sadoghi and Jacobsen [1] have established the superiority
of BE-Tree over other Pub/sub systems such ask-index [9], Propa-
gation [8], Gryphon [7], SIFT [10], and SCAN [5]. So, we did not
include these other systems in our experiments.

The test data (synthetic as well as real) for our experiments were
generated usingBEGen [1] and our experiments were modeled
after those reported in [1]. As in [1], we used two kinds of distri-
butions, namely, uniform and Zipf, for selecting the predicates of a
subscription.

For our experiments, the attributes in a subscription were ordered
based on the frequency of occurrence of the attributes in the entire
set of subscriptions in the system. The ordering was from the least
frequent attribute to the most frequent one. This ordering improved
PUBSUB performance, particularly for tests on Zipf distribution.

We first ran an experiment (Section 4.1) to determine an appro-
priate bucket size for PUBSUB. This experiment was followed by
several experiments to compare the event processing performance
of PS-IT, PS-RBPST, BE-Tree, and Siena. The various parameters

used to generate the test data used in each of sections IV-B through
IV-J are shown in Figure 6. The parameters are those supported by
BEGen [1] and have the following meaning:
Number of Dimensions: The total number of attributes in the sys-
tem.
Average Sub Size: Average number of attributes in a subscription
Average Event Size: Average number of attributes in an event
% Equality Predicates: Total number of predicates in the subscrip-
tion that involve the equality operator.
Matching Probability %: Probability that an event will match a sub-
scription.

In the following, the reported event processing time is the aver-
age time (microseconds per event) to process an event. This does
not include the time needed to process the subscriptions and create
the data structure in which the subscriptions are stored (i.e., for ex-
ample, the time to create the collection of attribute structures used
by PUBSUB).

4.1 Determining maximum bucket size
Figure 7 shows how the event processing time varies with maxi-

mum bucket size and matching probability.

0.01 0.1 1 5 10 15
10

0

10
1

10
2

10
3

10
4

Matching Probability Percent

S
ea

rc
h

T
im

e
P

er
 E

ve
nt

 (
us

)
(a) Interval Tree

0.01 0.1 1 5 10 15
10

0

10
1

10
2

10
3

10
4

Matching Probability Percent

S
ea

rc
h

T
im

e
P

er
 E

ve
nt

 (
us

)

(b) RBPST

500

1000

3000

5000

6000

10000

Figure 7: How search time depends (microseconds/event) on
bucket size

Bucket sizes≥ 5000 result in the best performance for the dif-
ferent matching probabilities as well as for both choices of the data
structureD. So, for the remaining experiments, we set the maxi-
mum bucket size to 5000. We note that in application environments
where the subscription insert/delete rate is not low, a smaller bucket
size will, most likely, result in overall best performance.

4.2 How search time varies with the number
of subscriptions

Figure 8 gives the variation in event processing time as we in-
crease the number of subscriptions. For the uniform tests the re-
duction in event processing time using any of the PUBSUB schemes
compared to BE-Tree is between 19 to 31%. The improvement in
search time compared to Siena is between 97 to 99% for the uni-
form tests. The results for the Zipf tests is comparable with respect
to BE-Tree. The performance speedup of PUBSUB with respect to
Siena is between 38 to 147 for the Zipf tests. The subscriptions in
Zipf tests have a large number of common attributes, which results
in deep trees for both PS-RBPST and PS-IT. The search perfor-
mance of PUBSUB degrades as a results, since a large number of
buckets are visited and the subscriptions stored in these buckets are
all compared with the event.

The relative performance of the two PUBSUB schemes is com-
parable. The performance of PS-RBPST is slightly better than that
of PS-IT especially when the number of subscriptions exceeded a
million and the degree of overlap between subscriptions is high (as

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

in the Zipf tests).

10
2

10
3

10
4

10
5

10
6

Dataset Size

S
ea

rc
h

T
im

e
P

er
 E

ve
nt

 (
us

)

Unif: dataset size

10
0k
20

0k
40

0k
60

0k
80

0k 1M 2M 3M 4M 5M

PS−IT
PS−RBPST
BE−Tree
Siena

10
2

10
4

10
6

10
8

Dataset Size

S
ea

rc
h

T
im

e
P

er
 E

ve
nt

 (
us

)

Zipf: dataset size

10
0k
20

0k
40

0k
60

0k
80

0k 1M 2M 3M 4M 5M

Figure 8: Search time with varying dataset size (microsec-
onds/event)

4.3 How search time varies with the number
of dimensions (or attributes) in the system

50 400 800 1200 1500
10

2

10
3

10
4

10
5

Number of dimensions

S
ea

rc
h

T
im

e
P

er
 E

ve
nt

 (
us

)

Unif: dimensions

PS−IT
PS−RBPST
BE−Tree
Siena

50 400 800 1200 1500
10

3

10
4

10
5

10
6

10
7

Number of dimensions

S
ea

rc
h

T
im

e
P

er
 E

ve
nt

 (
us

)

Zipf: dimensions

Figure 9: Search time with varying number of dimensions (mi-
croseconds/event)

All of the pub/sub systems being studied display the same trend
in search time as the number of attributes is increased. The search
time decreased slightly with an increase in the number of dimen-
sions. As the dimensions in a system are increased, the degree of
overlap among subscriptions tend to decrease if the average num-
ber of attributes in subscriptions remain the same. This translates
into the observed reduction in search times. On the tests based on
uniform distribution, PUBSUB is faster than BE-Tree by 24 to 30%,
while on the Zipf tests PUBSUB is 6.2 to 7.5% faster than BE-tree.
BE-Tree is faster than Siena for the uniform and Zipf tests.

5. CONCLUSION
PUBSUB is a versatile, scalable, and efficient publish/subscribe

system. Although the present implementation includes only 2 choices
(interval tree, and red black priority search tree) for the data struc-
tureD that is used to partition subscriptions based on the predicates
of a single attribute, the set of available data structures forD is
readily extendable to include structures such as Aho-Corasick trees
[17] and suffix trees [18] for string type attributes and operators.
Our selection for the initial data structures was motivated by their
suitability for predicates that specify a range of values.

We compared, experimentally, the performance of PUBSUB with
that of BE-Tree [1] and Siena [2, 3] in an environment where event
processing dominates subscription insert/delete. The same settings
were used to generate our datasets as were used in [1]. Addition-
ally, we used very large data sets containing over a million sub-
scriptions. In general, there were two different types of datasets –
those based on predicates selected from the attributes’ pool using

uniform distribution, and those based on predicate selection using
Zipf distribution. PUBSUB performed the best on the uniform tests,
while on the Zipf tests, the performance of PUBSUB is comparable
to BE-Tree. On our tests, the speedup, in event processing, of the
fastest version of PUBSUB relative to Siena ranged from a low of
38 to a high of 330 and averaged 201 for the uniform and the Zipf
tests. The speedup range relative to BE-Tree was between 1.23 to
1.48 and averaged 1.36 for the uniform tests and was comparable
to BE-tree on the Zipf tests.

It should be emphasized that although our experiments used the
same data structure for all attribute structures, we expect that in
real-world applications optimal performance will be achieved with
a heterogeneous selection of data structures with interval trees be-
ing used in some attribute structures, red black priority search trees
in others, and so on. The architecture of PUBSUB readily supports
this heterogeneity.

6. REFERENCES
[1] M. Sadoghi and H.-A. Jacobsen, BE-Tree: An Index Structure to

Efficiently Match Boolean Expressions over High-dimensional
Discrete Space,SIGMOD 2011.

[2] A. Carzaniga, D. Rosenblum, and A. Wolf, Design and evaluation of
wide-area event notification service.ACM Trans. on Computer
Systems, 19, 3, 2001, 332–383.

[3] A. Carzaniga and A. L. Wolf, Forwarding in a Content-Based
Network,ACM SIGCOMM 2003.

[4] H. Lu and S. Sahni, O(log n) Dynamic Router-Tables for Prefixes
and Ranges,IEEE Transactions of Computers Vol. 53, No. 10, 2004,
1217–1230.

[5] T. W. Yan and H. Garcia-Molina, Index Structures for Selective
Dissemination of Information Under the Boolean Model,ACM
TODS 1994.

[6] E. M. McCreight, Priority Search Trees,Siam J. Comput. Vol. 14,
No. 2, May 1985, 257–276.

[7] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D.
Chandra, Matching events in a content-based subscription system,
PODC 1999.

[8] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D.
Shasha, Filtering algorithms and implementation for fast pub/sub
systems,SIGMOD 2001.

[9] S. Whang, C. Brower, J. Shanmugasundaram, S. Vassilvitskii, E.
Vee, R. Yerneni, and H. Garcia-Molina, Indexing Boolean
Expressions,VLDB, 2009.

[10] T. W. Yan and H. Garcia-Molina, The SIFT Information
Dissemination System.ACM TODS, 1999.

[11] D. Mehta and S. Sahni, Handbook of Data Structures and
Applications,Chapman & Hall/CRC, 2005.

[12] A. Mitra, M. Maheswaran and J. A. Rueda, Wide-Area
Content-based Routing Mechanism,IPDPS, 2003.

[13] W. Rao, L. Chen, A. W-C. Fu, H. Chen and F. Zou, On Efficient
Content Matching in Distributed Pub/Sub Systems,INFOCOM,
2009.

[14] F. Cao and J. P. Singh, Efficient Event Routing in Content-based
Publish-Subscribe Service Networks,INFOCOM, 2004.

[15] M. Petrovic, I. Burcea and H-A. Jacobsen, S-ToPSS: Semantic
Toronto Publish/Subscribe System,VLDB, 2003.

[16] A. Yu, P. K. Agarwal and J. Yang, Generating Wide-Area
Content-Based Publish/Subscribe Workloads,NetDB, 2009.

[17] A. V. Aho and M. J. Corasick, Efficient String Matching: An Aid to
Bibliographic Search,Communications of the ACM, Volume 18, No.
6, June 1975, 333-340.

[18] E. M. McCreight, A Space-Economical Suffix Tree Construction
Algorithm, Journal of the ACM, Volume 23, No. 2, 1973, 262-272.

[19] W. Lu and S. Sahni, Efficient two-dimensional multibit tries for
packet classification,IEEE Transactions on Computers Volume 58,
No. 12, 2009, 1695-1709.

[20] J. L. Bentley, Decomposable searching problems,Information
Processing Letters, Volume 8, No. 5, 1979, 244-201.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

List of Acronyms

Acronym Meaning
BE-tree Publish/subscribe system based on Boolean

expression trees [9].
FIFO First in first out.
IT Interval tree.
PUBSUB Publish/subscribe system developed by us [14]
RBPST Red-black priority search tree.
RPST Radix priority search tree.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

	List of Figures
	Figure 1 Organization of PUBSUB subscription database ………………...……………….4
	List of Tables
	Table 1 Crossbar Throughput …………………………………………………………………Error! Bookmark not defined.
	Summary
	1 Introduction
	2 Methods, Assumptions, and Procedures
	2.1 Background and Related Work
	2.2 Crossbar Simulator
	2.3 PUBSUB

	3 Results and Discussion
	4 Conclusions
	5 References
	List of Acronyms
	APPENDIX: PUBSUB ISCC 2013 Paper

